The generator matrix

 1  0  0  0  1  1  1  1 3X  1 3X  2  X  1  1  1  X  1  1  1  1  2  1 2X+2 2X+2  1  1  2  X  1  1  1  X X+2 3X  X  1  2  0  1  1
 0  1  0  0  X  3 X+2 3X+3  1 2X+3 3X+2  1  1 3X+2 X+3 3X+2  1  0  1 2X+2  3 3X+2 2X+1 2X 2X+2 X+1 2X  1  1 3X+3 X+2  X  0  1  X  1 2X+3 X+2  1 X+3 3X+1
 0  0  1  0  0 2X 3X+1 X+1 X+3  1  1 X+1  0 2X+3 X+2 3X+2 2X+2 X+1 X+3 3X+2 3X+1  X 3X  1  1 2X+2 X+3  1  2  3  0  0  1  X  X 3X+2  2  1  3 3X X+1
 0  0  0  1  1 3X+1 X+3 2X+3 2X  0 3X+1  1 2X+3  X  0 2X+2  X  2 2X+1 X+3 3X+2  1 X+2 3X+2 2X+3  3 3X+1 2X X+1  1 3X+3 X+2 3X 2X+2  1 2X+3 3X+2 X+1 X+1  1 3X+3
 0  0  0  0 2X 2X 2X 2X  0 2X  0  0  0 2X 2X 2X  0 2X 2X  0  0 2X  0 2X 2X  0  0 2X 2X  0  0  0  0 2X  0 2X 2X  0 2X  0  0

generates a code of length 41 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 35.

Homogenous weight enumerator: w(x)=1x^0+760x^35+2309x^36+5206x^37+9308x^38+15458x^39+20605x^40+23294x^41+20762x^42+16400x^43+9339x^44+4674x^45+2008x^46+690x^47+162x^48+68x^49+18x^50+4x^51+4x^53+2x^57

The gray image is a code over GF(2) with n=328, k=17 and d=140.
This code was found by Heurico 1.16 in 85.4 seconds.